Π-electrons in a Single Strand of Dna: a Phenomenological Approach

نویسندگان

  • KAZUMOTO IGUCHI
  • K. Iguchi
چکیده

We revisit the problem of the electronic properties of a single strand of DNA, formulating the Hückel approximation for π-electrons in both the sugar-phosphate backbone chain and the π-stacking of nitrogenous bases in a single strand of DNA where the nitrogenous bases are adenine (A), guanine (G), cytosine (C) and thymine (T), respectively. We calculate the electronic band structure of π-electrons: (i) in the single nitrogenous base molecules such as A, G, C and T, (ii) in the single sugar-phosphate molecule, (iii) in the single nucleotide systems such as A, G, C, T with the single sugar-phosphate group, and (iv) in the system of a single strand of DNA with an infinite repetition of a nucleotide such as A, G, C and T, respectively. We find the following: In the case of (i), there is an energy gap between the energy levels for the HOMO and LUMO in the nitrogenous base. This guarantees the semiconducting character of the bases as a mother material. In the case of (ii), there are the HOMO localized at the oxygen site with a double bond and the LUMO localized around the phosphorus atom, which have a quite large energy gap. In the case of (iii), the energy levels for the HOMO and LUMO of the nitrogenous base remain almost the same as those of the nucleotide, while those of the sugar-phosphate group remain the same as well. The HOMO of the sugar-phosphate group exists right below the HOMO of the nitrogenous base. Therefore, comparing the energy levels for the HOMOs of the nitrogenous base group with those of the sugar-phosphate group, the nitrogenous base group behaves as a donor while the sugar-phosphate group behaves as an acceptor. In the case of (iv), there are energy bands and band gaps for the extended states in the nitrogenous base group and the sugar-phosphate group as well as the discrete levels for the localized states at the phosphate site in the spectrum. There is a transition from semiconductor to semimetal as the π-electron hopping between the nitrogenous bases of nucleotide is increased. The details of the above will be discussed in the present paper. Thus, we show the powerfulness of the Hückel theory in the study of DNA as well, although this theory is, at the first glance, oversimplified and purely phenomenological.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom

Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...

متن کامل

Evaluation of the relative biological effectiveness of the Auger electrons produced during gadolinium neutron capture therapy using microdosimetric approach

Determination of the relative biological effectiveness (RBE) of Auger electrons is a challenging task in radiobiology. In this study, we have estimated the RBE of internal conversion (IC) and Auger electrons released during Gadolinium neutron capture reaction (GNCR) by means of biological weighting functions (BWFs) with microdosimetric approach. Regarding the different distribution of Gadoliniu...

متن کامل

A novel optical DNA biosensor for detection of trace concentration of Methylene blue using Gold nano-particles and Guanine rich single strand DNA

The glass surface modification with 3-(mercaptopropyl) trimethoxysilane (MPTS), gold nano-particles (GN) and guanine rich single strand DNA (ss-DNA) was utilized as a novel and efficient platform for sensing trace concentration of methylene blue (MB) by an inexpensive spectrophotometric method. Methylene Blue (MB) can interact with the guanine base of single strand DNA and absorbed onto glass s...

متن کامل

A novel optical DNA biosensor for detection of trace concentration of Methylene blue using Gold nano-particles and Guanine rich single strand DNA

The glass surface modification with 3-(mercaptopropyl) trimethoxysilane (MPTS), gold nano-particles (GN) and guanine rich single strand DNA (ss-DNA) was utilized as a novel and efficient platform for sensing trace concentration of methylene blue (MB) by an inexpensive spectrophotometric method. Methylene Blue (MB) can interact with the guanine base of single strand DNA and absorbed onto glass s...

متن کامل

Investigation of Solvent Effects on Interaction of Single-Strand DNA with Open-End of Single Walled Carbon Nanotubes Using QM and MM methods

The interaction of biomolecules with carbon nanotubes (CNTs) has generated a great deal ofinterest in the past few years. The interaction between B-form single-strand DNA (ssDNA) andsingle-walled carbon nanotubes (SWCNTs) is a subject of intense current interest; however thereare a relatively small number of papers in the literature dealing with interaction of DNA andSWCNTs. In this work we inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004